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Abstract— End-to-end congestion control mechanisms such as those intraffic itself is bursty [16], [1], which means that a loss event

TCP are not enough to prevent congestion collapse in the Internet (for gt g router tends to involve many packets at a time, leading
starters, not all applications might be willing to use them), and they must - .
be supplemented by control mechanisms inside the network. The IRTF to reduced throughput and synchronization between TCP con-

has singled out Random Early Detection (RED) as one queue managementN€ctions sharing the ressources of that router. Finally, not all
scheme recommended for rapid deployment throughout the Internet. How- applications are willing to use control mechanisms; in particu-

ever, RED is not a thoroughly understood scheme — witness for example how : ; ; ot
the recommended parameter settings, or even the various benefits RED islar' many interactive audio (IP telephony) applications send data

claimed to provide, have changed over the past few years. at a rate independent of the state of congestion in the network,
In this paper, we describe simple analytic models for RED, and use these and thus grab all the bandwidth of the network when competing

models to quantify the benefits (or lack thereof) brought about by RED. In - with rate adaptive applications such as those that rely on TCP.
particular, we examine the impact of RED on the loss and delay suffered

by bursty and less bursty traffic (such as TCP and UDP traffic, respec- Clearly, the uncontrolled uge of such gppllcatlons again raises
tively). We find that (i) RED does eliminate the higher loss bias against the possibility of Internet-wide congestion collapse.

bursty traffic observed with Tail Drop, but not by decreasing the loss rate The difficulties above bring out the necessity to complement
of bursty traffic, rather by increasing that of non bursty traffic; (ii) the - .
number of consecutive packet drops is higher with RED than Tail Drop, end-to-end control mechanisms with router-based control mech-

suggesting RED might not help as anticipated with the global synchroniza- anisms that extend beyond the current Tail Drop scheme. The
tion of TCP flows; (iii) RED can be used to control the average queueing |nternet Research Task Force (IRTF) produced a document, now

delay in routers and hence the end to end delay, but increases the jitter of ; ; ; _
non bursty streams. Thus, applications that generate smooth traffic, such an information RFC [3], urging the deployment of router-based

as interactive audio applications, will suffer higher loss rates and require CONtrol schemes. Specifically, the document, often referred to

large playout buffers, thereby negating at least in part the lower mean de- as the “RED manifesto”, singles out the Random Early Detec-

lay brought about by RED. tion (RED) scheme, as the recommended scheme for use in the
Internet.

I. INTRODUCTION The RED scheme was initially described and analyzed in [8].

i asically, RED starts dropping packets randomly before the
Buffers are a key component of a packet-switched netwo@uﬁer gets full. Thus, it forces connections to back off before
as they absorb burst arrivals of packets and hence reduce Iost

es ) X i, ]
Larger buffers can absorb larger bursts, but they tend to buPda buffer fills up and multiple packets are dropped; if connec

up at high load and increase queueing delays. The traditiot'glpS ignore packet drops and keep sending at too-high rates,

technique for managing delay is to set a maximum length for-> keep suffering from high loss rates. RED is claimed to
d ging Y 9 rovide several benefits, in particular 1) decrease the end-to-end

each buffer queue, accept packets in the queue until the may \fay for both responsive (TCP) and non necessarily responsive
mum length is reached, then drop subsequent incoming packeet y b yresp

until the queue decreases below its maximum value. This bu gFﬁ-ume traffic (UDP), 2) prevent large number of consecutive

manacement scheme is referred to as Tail Dro packet losses by ensuring available buffer space even with bursty
£ dgt d trol hani q .p. the Int traffic, and 3) remove the higher loss bias against bursty traf-
na-to-end control mechanisms are used in the in em.etﬁtcoobserved with Tail Drop. Some of these claims have been
regulate the amount of traffic in the network and match it

T ith simulati ies. H ite the IRTF
available capacity, thereby making sure that queue lengths aidated with simulation studies. However, despite the

. ) Bommendatiothat RED be widely deployed, RED is not thor-
loss rates remain reasonable. The most widely used confra

mechanism is TCP’s window based mechanism [12]. TCP q 3
prevented an Internet-wide collapse, however some thorny prQ
lems remain. For example, the mechanism in TCP tends to kee

ueue occupancy high, and thus tends to discriminate against
g ffi P . y bg f K . 9 r,11sThe burstiness of TCP traffic can be explained by user behavior, and by char-
ursty traffic (since bursts of packets arriving at a router Woneristics of the TCP closed-loop feedback control mechanism, coupled with

find much free buffer space to squeeze into). Furthermore, T@EK compression [5]. Thus, it appears to be a salient feature of the Internet.

hly understood: there is little operational experience of RED
arge scale networks — one of the few published measurement
I-de is limited in scope because it only considers the router



performance (as opposed to the end-to-end performance) avdhierew is a fixed (small) parameter ads the instantaneous
does not clearly describe the measurement settings and thegeleue size. A typical drop functiehis defined by three param-
act information being measured [4] —, it is not quite clear hoatersminy,, max, andmax;, as follows :

to choose RED parameters (and indeed the recommended val- . A A

ues have changed over time), and there is, to our knowledge, d(k) =0 if k <ming, d(k)=1 if k> maxy,

no published analytical model of REEhat would for example

allow us to quantify the impact of parameters settings on per- d(l%) _ k — ming, % max. otherwise
formance, or the impact of different parameters values taken by maxn — Ming, P '
different ISPs in a large network. Refer to Figure 1.

In this paper, we develop simple analytic models for the RED
and Tail Drop buffer management schemes, and use these mod- a) ,

els to quantify the benefits (or lack thereof) brought about by
RED. In particular, we examine the impact of RED on the loss
rates, the number of consecutively lost packets, the mean de-
lay, and the delay jitter, suffered by bursty and less bursty traffic
(such as TCP and UDP traffic, respectively). We find that (i) 3
RED does indeed eliminate the bias against bursty traffic ob- MaXp oo ! § k
served with Tail Drop (claim 3 in the previous paragraph); how- 0 minth maxth K
ever it does so not by decreasing the loss probability of bursty
(TCP) traffic, but rather by increasing that of smooth (UDP) traf-
fic; (ii) the number of consecutively lost packets is larger with
RED than with Tail Drop, suggesting that RED might not help
as much as anticipated with the global synchronization of TCP ) , !
flows (claim 2 above), (iii) RED is crucial to control the averagé" A RED router with bursty input traffic
gueueing delay in routers and hence the end-to-end delay (clairhet us first derive a model of a RED router with a single input
1 above), but increases the jitter of non bursty (UDP) strearstream of bursty traffic. We assume that packets arrive according
and hence their playout buffer requirements, thereby negatingaa batch Poisson process; specifically, bursts (or batchés) of
least in part the gains on the lower mean delay. In additiongackets arrive according to a Poisson process ofrdiote that
these three main findings, we also show that the often used cl#nis model does not really match empirically derived models of
that the loss rate suffered by a flow in a RED router is propdr€P and other bursty traffic patterns [13], [16], [19]. However,
tional to the flow intensity (claim first made in [8]) is true onhyjit is analytically tractable; furthermore, our purpose here is to
if the flow arrival process is Poisson (specifically, it requires tttmmpare the relative impact of RED on bursty and less bursty
PASTA property). traffic. We can imagine (and this will be confirmed with simu-
The rest of the paper is organized as follows. In Section ltion in Section V) that the difference between a smooth input
we describe our basic model, and use it to examine the biadraeffic and a batch Poisson process (as examined here) would
Tail Drop against bursty traffic and whether RED eliminates thie a lower bound to that observed between a smooth input and
bias. In Section Ill, we examine the number of consecutivelyn input process with long range dependence. The processing
lost packets in both Tail Drop and RED routers. In Section I¥imes of the packets in the router are assumed to be exponen-
we compare the average delay and delay jitter in Tail Drop atidlly distributed with mean~!. We define theffered loadby
RED routers. In Section V, we use simulations to validate the= B/ .
analyticresults obtained with the model, and to further examine
the issue of delay jitter for UDP flow with RED routers. Sec- 8

-

tion VI concludes the paper. P" P" I D —

Drop ‘V
Il. BIAS AGAINST BURSTY TRAFFIC

Fig. 1. Drop function of RED

In this section, we describe our basic model, and use it to Fig. 2. Model of RED router with bursty input traffic
examine the bias of Tail Drop against bursty traffic and whether . ]
RED eliminates this bias. The number of packets buffered in the queue defines a

We consider a router with a buffer sizeffpackets. With the Markov chain, the stationary.distrib.ution of .vvh?ch can be gzasily
RED buffer management scheme, incoming packets are drop ggputed. We denote byth|§ stationary dlstrlb_u_t|on. Using
with a probability that is an increasing functidrof the average the PASTA property, we obtain the drop probability of a packet
queue sizé:. The average queue size is estimated using an &x& Tail Drop router:
ponential weighted moving average : B_1 1

R R PTD:ﬂ'(K)+7T(K—1)—+...+7T(K—B+1)—.
e (1-wk+wk, B B
2There are specific models such as in [11] that abstract a RED router We now consider a RED router, and we mgke the assumption for
router in which the loss rate is proportional to input flow intensity; we get ba that the drop raté(k) depends on the IAnStantaneous queue
to such models in Section Il. sizek rather than on the average queue giZge. we assume



w = 1). Note that there is no reason for choosingx;;, < K We conclude that whatever the burst size,
in this case, hence we leiax;;, = K. We use the following

Joo= TR 1 1
approxmgﬂon. Prgp ~Prmp=1—-+4o0 (-) whenp >> 1. (1)
Approximation 1: The RED router uses the same drop prob- P p

ability d(k) on all packets in the same burst, whéres the in- . . )
stantaneous queue size at the time the first packet in the bE’r’sz RED router with bursty and smooth input traffic
arrives at the router. We consider now a router with two input flows, one bursty
Note that in reality the difference between the drop probabiith batch Poisson arrivals as above and batch Bizeve take
ity of the first packet of the bursk(k) and the drop probability B = 3 in the numerical examples below), the other a smoother
of any other packet of the burst cannot exceed: (non batch) Poisson stream. We denotg ity andp(s) the load
of the bursty and the smooth traffic, and oy p(b) + p(s) the
Ad(k) =d(k+ B —1) —d(k). total offered load.

Thus, the approximation above provides a lower bound on the B
drop rate. Furthermore, it is accurated(k) is small) when the o Bursy Traffic
drop function is sufficiently smooth (namely for small values of H R
miny, and high values ofhax;) and the burst siz& is not too \44 jD L
large compared to the buffer siZé. Now, using the PASTA ﬁ*

property again, we approximate the drop probability of a packet

in a RED router by: «#ﬁ—# Smooth Treffic

Prep = m(K) + n(K — Dd(K — 1) + ... + m(1)d(1).

Fig. 4. Model of RED router with a mix of bursty and smooth traffic
Note that the stationary distributianin this case is different
from that obtained with Tail Drop. Let = be the stationary distribution of the total number of
Example 1:Consider a buffer size dk = 40 packets, with packets in the queue. Using the PASTA property, we obtain the
RED parametersuing, = 20, maxy;, = 40 andmax, = 1. drop probability of a packet for the bursty flow and the smooth
Figure 3 shows the drop probability of an incoming packet adlaw in a Tail Drop router:
function of offered load for different burst sizes, obtained by

previous analysis (with Approximation 1) and by simulatiomyp, () = 7(K) + n(K — 1)E +...+7(K-B+ 1)l
(without Approximation 1). The figure clearly shows that the B B
approximation is very accurate, even for large values of the buggly
Slze. Prp (S) = ﬂ'(K)
07 ‘ ‘ ‘ ‘ Clearly Py (b) > Prp(s), meaning that there is a bias against
K s bursty traffic with Tail Drop. On the other hand, we obtain for
CI L Rmian®sd the RED router (using the same approximation as earlier)
05| *  RED simulation (B = 10) p
S oo Prep(b) = Y w(k)d(k) = Prep(s),
2 k=1
2 03¢

meaningthat there is no bias against bursty traffic with RED.
In fact, RED distributes the drops among both types of traffic.
Noting that

0.2

01

° 08 ! e 2 25 PTD = @PTD (b) + %PTD(S%

Offered Load

Fig. 3. Drop probability vs. offered load for different values of the burstsaewe obtain in view of (1) for high values of the offered load,

- o Paen(®) = Pren(s) ~ 22 Peo () + 22 Pro ). @)
Note that the drop probability is always higher with RED than p P
with Tail Drop (this is a sample-path property). For large OE
fered load (which may represent transient congestion periods), o
the drop probability is very close to that suffered by a Poisson'Ve have so far assumed that the drop probability in the RED
traffic in a Tail Drop router, which is given by the loss probabilouter only depends on the instantaneous queue size. Adding
ity for the M /M /1/K queue: gueue size averaging increases the complexity of the model (as it
increases the memory needed to keep track of past queue sizes).
1—p¥ A key observation, however, is that when the weighof the
Prmyyr =1 - 1— pK+L- moving average scheme is small (which is the case in practice),

Including queue size averaging in the model



the estimated average queue sizearies slowly, so that con- 08

. . . Tail Drop andysis e
secutive packets belonging to the same burst are likely to exper- o7l + Tal Dropsmulation (bursy traffic) L
. - ~ . : x Tail Drop smulation (smooth traffic) ot
iment the same drop probabilit§k). As a result, the Approxi- RED andlysls .
N . A I A L. i 06 L * simulation (bursty traffic) e
mation 1 used in previous analysis is still valid in this case. Even °  REDsmuiation (smoothtrafic) - 5
more, it is acurate whatever the drop function, and in particular z osf
for the RED parameters recommended in [8]. § 0al
Example 2: Consider a buffer of siz& = 40 and RED E
. a 03¢t
parameteraning, = 10, maxy, = 30, max, = 0.1 and
w = 0.002. Figures 5 and 6 show the drop probability as a 02t
function of the fraction of bursty traffic in the input traffic, ob- o1l
tained using the analytic expressions above (continuous line for . )
RED, dashed for Tail Drop), and using simulations (done with 0 05 25
queue size averaging, and without Approximation 1). Figure . OffereLoad
5 sﬁovys that, with an offered load pf:.2, t_he drop prob- -~ Tall Drop aelysis _
ability is the same for both types of traffic with RED, namely 06 % TalDron Smdation (oot vty e
. RED analysi L
Pren(s) ~ Prep(b) ~ 0.5, and it is equal to the average drop e - RED gm”yl?fgﬂ§2%§¥ﬁ2?’£f%
g . . . . .o [ a il atl I
probability with Tail Drop, as predicted by equations (1) and (2).
z o4l L
1 ‘ g . e
- Tail Drop analysis g 03r
+  Tail Drop simulation (bursty traffic) a
x  Tail Drop simulation (smooth traffic)
L RED analysis 02
08 x  RED smulation (bursty traffic)
o RED simulation (smooth traffic)
T . 01}
2 o B
g x x * * * ¥ y - e 0
£ TS Y N o g & ] ] # 0 05 2 25
g_ ol [ g | Offered Load
e x| . -
) Fig. 6. Drop probability vs. offered load for small (10% — top) and large (90%
02| i — bottom) fraction of bursty traffic
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 i . .
Fraction of Bursty Traffic (%) burst of packets (that is under the Palm probability [2]) coin-

cides withr, the continuous-time stationary distribution /of
This means that the claim made in [8], and used in recent mod-
els of additive increase and multiplicative decrease congestion
control schemes in a RED environment (e.g. [11]), namely the
We conclude that RED avoids the bias against bursty traffioss rate of a flow in a RED router is proportional to the intensity
and that this results in a significant decrease of the drop rate siffthe flow, is valid only for Poisson flows. However, itrist
fered by bursty traffionly when the fraction of bursty traffic is valid for other types of flows found in practice such as periodic
small (see Figure 5). Otherwise, the main effect of RED is to iflews, or flows with heavy-tailed characteristics. For example,
crease the drop probability of smooth traffic, without improvingigure 7 shows the drop probabilities obtained in a RED router
the drop probability of bursty traffic. In practice, if we replacevith both a bursty input traffic with Pareto inter-arrival times be-
"bursty” with "TCP” and "smooth” with "interactive UDP au- tween bursts and a Poisson input traffic. The Pareto coefficient
dio” for example, and if we note that TCP makes up the vastthe figure isl.4 and the RED parameters are those of Example
majority of Internet traffic, the result above means that the over- Unlike what we saw earlier in the case of the batch Poisson
all loss rate suffered by TCP connections when going from Taifrival process, the drop probability for the Pareto traffic is dif-
Drop to RED will not change much, but that the loss rate siferent from the drop probability for smooth traffic even for the
fered by UDP/IP telephony applications (whether they are ra®&D router. Thus, it is important to be aware of, and careful
adaptive or not) will increase significantly. In all cases,dfwp about, strong traffic assumptions one might making when mod-
rate (namely the number of packets dropped per unit of time)ing RED routers as in [11].
of a flow going through a RED router does not depend of the
burstinesof this flow, but only on théoad it generates (refer to 1. SYNCHRONIZATION OF TCPFLOWS
Equation (2) above).

Fig. 5. Drop probability vs. fraction of bursty traffic for an offered loag of 2

The combination of a TCP mechanism which keeps queue
occupancy high, of bursty TCP traffic, and of the Tail Drop bias
against bursty traffic, means that loss events at a router tend to

It is important to note that the analysis above heavily reli@svolve many packets. If these packets belong to different TCP
on the PASTA property of Poisson processes. In general, ittisnnections, these connections then experience losses at about
not true that the stationary distribution of the number of pactiie same time, decrease their rates/windows in synchrony, and
etsk buffered in the queue immediatdhgforethe arrival of a then tend to stay synchronized. This phenomenom, referred to

D. Animportant observation about PASTA



07 \ \ \ \ - Note that in reality when a packet is dropped with probabil-
Y i%LBE3§§$ﬂ%L%l§'{5§§jﬂ'%Ti?> = ity d(k), the next packet is dropped with probabilit§l), where

T RED S tion (smobth i1 - ! < k depends on the number of packets served between both ar-

rivals. Thus the approximation above provides an upper bound
on the number of consecutive drops. Furthermore, it is accurate

(i.e. the differencel(k) — d(I) is small) when the drop function
is sufficiently smooth (namely for small values min, and
high values oinax;) and the offered load is high. Denoting by
m(-|drop) the stationary distribution of the number of packets
in the queue, conditionally to the fact that a drop occured, and
assuming that ( K|drop) is negligeable, the number of consec-

0 o5 1 15 2 25 utive drops in a RED routéNgzep satisfies
Offered Load

05

04

03 r

Drop Probability

0.2

01
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Fig. 7. Drop probability for RED and Tail Drop vs. offered load for bursty
(batch arrivals and Pareto distributed interarrivals) and smooth (Poisson) vn >0, P(Nrgp >n)= Z m(k|drop) d(k)".
traffic, and a high fraction of bursty traffic (90%). k=0

By Bayes’ formula,
as the synchronization of multiple TCP connections, has been

observed in simulation [20], however it is hard to observe in the (k|drop) = _m(k) d(k).
operational Internet. P(drop)
In any case, one claim made by the RED designers is t s conclude that
since RED spreads out packet drops, it will help break the syn-
chronization pattern which (is thought to) occurs with Tail Drop. K-1
To investigate this claim, we examine in this section the impact Z m(k)d(k)"H
of RED on the distribution of the number of consecutive packet Vn >0, P(Nmmp > n)= k=0 @)
losses in a loss event at a router. We consider the same model as =7 K-1
before, except that the traffic is now simply a Poisson process of Z m(k)d(k)
intensity A, so that the offered load is equalge= A\/p. k=
A. Tail Drop Figure 8 compares the analytic result above with simulation for

) , i an offered load op = 2 and RED parameters as in Example 1.
Assume that a drop occurs at time= 0 in a Tail Drop \ya gbserve a very good fit.

router. Since the exponential distribution is memoryless, the
next incoming packet is dropped if and only if its arrival time

1 T T n T n
is smaller than the service time of a packet. Thus when a packet L Al Drepamation
is dropped, the next packet is dropped with probabjljtwhere ] « RED amdision

00 R A 0.75 | ‘1‘}
SR f
0 Atp =
2 05F A%
As a result, the number of consecutive drops in a Tail Drop
router Ntp satisfies
0.25 x
Yn >0, P(Ntp>n)=p" N *‘z_*}
Using the expression 0 e, ‘
p 0 5 10 15 20

pzma

. Fig, 8. Distribution of the number of consecutive drops for an offered load of
we conclude that the mean and the variance of the number 8fp _9 P
consecutive drops in a Tail Drop router are respectively given

by
Equation (4) allows us in particular to evaluate the mean and
E(Nmp)=p+1 and var(Ntp) =p(p+1). (3) thevariance of the number of consecutive drops in a RED router.

e ) We obtain
B. RED with instantaneous queue size
K—-1
As in Section II, we first consider the case where the drop (k) d(k)*
rated(k) depends on the instantaneous queue/siaad we let Pt 1—d(k)
max;, = K in this case. We use the following approximation: E(Ngep) =1+ —— ;
Approximation 2: Consecutively dropped packets are dropped r(k)d(k)

with the same probability.



and 1
K-1 2 I .
d(k) . T2l Drop Smusion
(k)| —F—= —— RED smulation (w = 0.1)
1 - d(k‘) 075 [t —*— RED smulation (w=0.01) |
N, ) _ k=0 el —=— RED simulation (w = 0.001)
Var( RED) = "1 ‘.
> w(k)d(k) 5 oslh
k=0 T H
Table | shows the results obtained for a Tail Drop router and a L
RED router, when the offered loadjs= 2. We conclude that ~ °*[
RED effectively spreads out packet losses, and thus may avoid Y
the synchronization of TCP flows. o S : ‘ :
0 10 20 30 40 50
mean| variance ’
Tail Drop 3 6 Fig. 9. Distribution of the number of consecutive drops for an offered load of
RED 2.3 4.1 p=2
TABLE | _
MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN . mean| variance
OFFERED LOAD OFp = 2 Tail Drop 3.0 6.0

REDw = 0.1 59 40
REDw = 0.01 7.7 170
REDw =0.001 | 7.2 190

TABLE Il
MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN

C. RED with average queue size

As mentionned earlier, the model becomes much more com- OFFERED LOAD OFp = 2
plex when RED uses the average queue size instead of the in-
stantaneous queue size to compute the drop probability of a
packet. But, here again, the key observation is that when the
parametety is small, the.estimated average queue §iﬂgries IV. QUEUEING DELAY
slowly, so that consecutive packets are likely to experiment the )
same drop probability,i(l}). As a result, Approximation 2 is We next compare the delay through a router with both the
still valid in this case. In fact, it is acurate whatever the drdpED and Tail Drop management schemes. We use the same
function, and in particular whemax;;, < K, provided that the model as in previous section, where the mpqt trafficis a Po!sson
offered load is high. It follows then from (4) that the distributioprocess of intensity,, to evaluate the queueing delay (equiva-

of the number of consecutive drops satisfies lently the queue size) in the router.
K1 A. Tail Drop
(k) The stationary distribution of the queue size in a Tail Drop
Yn >0, P(Nmep >n)> I’tTath > 0. router is simply given by
> mlk)d(k) . (1 —p)
k—0 szO,...,I&, WTD(I{:):W.

Hgnce, when the paramgtgrtends to O, thg number o.f'consecB_ RED with instantaneous queue size

utive drops becomes infinite with a positive probability ! The ] )

interpretation of this result is that, under high load, the aver-As we did earlier, we assume here that the drop g

age queue size slowly oscillates around the valae,;,, result- depends on the instantaneous queue/siaed we letnax;, =

ing in long (infinite whenw tends to 0) periods of consecutivek - Then the number of packets in the queue is a birth-death
drops (Wheﬂg > max), and long (infinite whenw tends to Process, the stationary distribution of which is simply given by

0) periods of random drops (whén< max). This is illus-

trated by the simulation results of Figure 9 and Table Il, obtained k i 1 dil

for an offered load op = 2 and the same RED parameters as p H( — b))

those of Example 2 (except thattakes the valueg.1, 0.01 and Vk=0,....K, mrep(k) = — l:,S_l . (5
0.001). The results show that RED dramatically increases the Z P H(l —d(l)

mean number of consecutive drops as well as the variance of the
number of consecutive drops, in particular wheis close to its
recommended valug002 [8]. This means that deploying REDAs illustrated by Figure 10 and Table 11l (for an offered load of
might in fact contribute to the synchronization of TCP flows: = 2 and the RED parameters of Example 1), RED reduces the
which is exactly the opposite of one of its initial objectives. mean delay, but increases the delay variance significantly.

k=0 =0
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Fig. 10. Distribution of the queue size for an offered loag ef 2
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Fig. 11. Distribution of the queue size for an offered loag ef 2

mean| variance
Tail Drop | 39.0 2.0 V. SIMULATION
RED 29.0 10.0 In Sections Il and 1lI, we derived analytic expressions of var-
TABLE III ious measures of interest to evaluate RED. While the analytic

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

p=2

approach is important to quantify relationships between param-
eters and performance measures, it must be complemented with

simulation or experiments to validate the hypotheses made dur-
ing the analysis, and to explore phenomena not amenable to
tractable analysis.

Consider then the case of a UDP-based IP telephony appli&]aé—rsléwvsi’tffggn’ we focus on simulation results. We obtained
tion, which sends smooth traffic (typically on/off periodic traf- '

fic when silence detection is used). We saw in Section Il thgt \ialidating the analytic results

that application would loose many more packets with RED than ! ) ) ) .

with Tail Drop. We see here that the average delay suffered” @ first set of simulations, we verify that the main conclu-
by the UDP packets would be much lower than with Tail Drog/O"S Of our analysis are valid. We use a simple network setup
(depending on the choice efaz;;), which is a key benefit in W'th. many sources; send TCP and UDP tra'lfﬂc'to destinations
telephony applications. However, the delay variance (compuféd/i@ @ RED or Tail Drop router, as shown in Figure 12.

from Equation 5) is such that the end to end delay, including the
playout delay at the destination, does not reflect the gain RED @
brought to the mean delay. We can then expect the audio quality
perceived at the destination to be mediocre at best.

C. RED with average queue size

router }—{ router

Consider now the case when the drop rate computed by RED
is a function of the average queue size. As mentionned earlier,
provided that the parameter is small and the offered load is
high, the estimated average queue size (and hence the stationary
instantaneous queue size) will slowly oscillate around the value
maxy,. Thus, although RED reduces the mean delay, RED also
adds jitter in the delay, and so as much as the parametsr
small. This is illustrated in Figure 11 and Table 1V, for an of- The TCP sources use the NewReno algorithm, the UDP
fered load ofp = 2 and the RED parameters of Example 2. sources send CBR traffic. We use different propagation delays

for the links between the sources and the router, so as to have

Fig. 12. Network topology for the simulation studies

_ mean| variance a range of round trip delays. In practice, the round trip delays
Tail Drop | 39.0 2.0 vary between 120ms and 220ms. In the first router we choose
RED 29.9 | 387 the buffer management scheme to be RED or Tail Drop. In our

TABLE IV simulations, we have over 100 TCP connections sending packets

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

p=2

from the sources to the destinations. We also have UDP connec-
tions sending at a constant rate which, summed over all UDP
sources, equals 10% of the bottleneck link speed. The bottle-
neck in our setup is the link between the two routers, with a



bandwidth of 10Mb/s. We measure in the first router the dropWe now compare the delay properties derived with the model
rates of both UDP and TCP traffic, and the delay of UDP packith those obtained with the simulations. Figure 13 shows the
ets; we also compute the total goodput of the TCP connectioesolutions with time, as the simulation progresses, of the de-

We have already compared earlier in the paper our analyiy in the router with RED and Tail Drop, when the buffer size
model with simulations that did not make assumptions (suchiagqual to 40 packets and 150 packets, respectively. With Talil
Assumption 1 and Assumption 2) used in the models, and Weop, and given the high load in the router, the buffer occupancy
did observe good correlation. We now investigate how well oguickly increases then remains close to its maximum value.
model, which models TCP connections as a bursty open-ladpte that with 100 TCP flows and different round trip delays, we
traffic source, ties in with reality, or at least with our simulatiodo not observe system-wide synchronization patterns that would
setup, in which TCP connections are closed-loop rate controliedicate large scale TCP synchronization. The situation is quite
connections. To do so, we compare the total TCP goodput alifferent with RED. The queue builds up quickly; RED starts
the loss rates for TCP and UDP traffic obtained with simulatiodropping packets when the average queue size reachgsg,

Refer to Table V. then drops all packets when the average queue size reaches
maxy,. The drop rate decreases when the average queue drops
| UDP loss rate| TCP loss ratel Goodput belowmaxy;,, traffic picks up, the average queue tends toward
Tail Drop 0.051 } 0.102 } 5.55 (Mbf/s) max, and eventually exceeds it, and the cycle resumes (refer to
RED 0.083 0.102 5.56 (Mbf/s) our earlier discussion in Section Ill). Thus, as expected, the av-
TABLE V erage queue stays closertmx;;,, and the RED router behaves
LOSS RATES AND GOODPUT FORED AND TAIL DROP essentially like a Tail Drop router with buffer sizeax;, [6],

[15]. However the instantaneous queue size varies heavily with
time, more so than a Tail Drop queue does in the same situation.

We observe that the loss probability for TCP (bursty) trafffdgain, this shows good correlation with our analytic results.
does not change between RED and Tail Drop. Furthermore, the
loss rate for UDP (smooth) traffic increases significantly whéh mpact of the number of flows
going from Tail Drop to RED. Both these results match those Finally, we use simulation to examine an issue we did not

obtained with the analysis in Section II. The first result also futy nsider in our analysis, namely the impact of the number of
ther suggests that TCP synchronization might not happen atiglp fiows on performan’ce.

in practice. We also note that, unlike what is sometimes claimed,
the total TCP goodput does not increase with RED.
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45000

Goodput

40000

Delay in sec
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35000 Taildrop -------

0.06 H Tail drop
RED

4 1 1 1 1 1
"""" 0 50 100 150 200 250 300
Number of flows

1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Time in sec

UDP drop probability

Delay in sec
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Fig. 13. Queueing delay for RED and Tail Drop with buffer size of 40 (top) arfeig. 14. Goodput of the TCP connections and UDP loss rate as a function of
150 packets (bottom) the number of active flows in the router for a buffer size of 40 packets



Figures 14 shows the evolutions of the total TCP goodput (top
graph), and the UDP loss rate (bottom graph) as a function of the
number of TCP flows. We first observe that using RED or Tail ‘ ‘ ‘ ‘ I —
Drop does not change much the total TCP goodput, indepen
dent of the number of flows. When the number of flows is large
(and therefore the load in the router is sustained and high), RED_ | §i
performs slightly better, but only at the cost of dropping mangl
more UDP packets than Tail Drop would. Again, this ties irj
well with our analysis. We also observe that RED drops mor%;e“’“
UDP packets than Tail Drop independent of the number of flows,
and that the drop rate keeps still increasing even as goodput rey |
mains steady when the number of flows increases. Furthermore, |§
the goodput does not increase significantly when more than 75 § 1
flows are active in the network. In addition, Tail Drop performs °x
better when only few flows are active. ‘ ‘ ‘ ‘ ‘

We now examine how the number of flows impacts the router Tl Bop
performance (as opposed to the end to end performance dis* = ] :
cussed above). To do this, we plot in Figures 15 the evolutions of
the actual queue size during an experiment with different num-s |
bers of active flows in the network. We set up the network as
described before but used a large buffer of 200 packets. For the
RED router, we setning, = 50, maxy, = 150, max, = 10% i
and the averaging parameter= 0.002. When the number of _
flows is small the Tail Drop queue router is rarely empty, while s|
the RED actual queue size oscillates heavily and is more often
idle. When the number of flows is higher, the router is never

Queu

idle for RED nor for Tail Drop. This means that we should 0 = = T.mflsnsec “ % 50
not expect much difference in throughput for the two dropping ‘ ‘ e
schemes; this in turn confirms our earlier observation when we TailDrop -
saw a larger throughput with Tail Drop than with RED. Note " [\l R RSEMSIRIN § 2 Wk ARSATRIMIM N B M‘ i
that, in any case, we observe a much more pronounced oscil- £, LR I

lation of the actual queue size with RED then with Tail Dropy =
This reflects our observations earlier in this section on large de-
lay variance with RED.

100

Queue size i

V1. CONCLUSION

We have shown in the paper that (i) RED does eliminate the®|
higher loss bias against bursty traffic observed with Tail Drop,
but not by decreasing the loss rate of bursty traffic, rather by in- , ‘ ‘ ‘ ‘ ‘
creasing that of non bursty traffic; (i) the number of consecutive “ T e N ”
packet drops is higher with RED than Tail Drop, indicating that ‘ ‘
RED might contribute to, rather than solve, the global synchro-,,
nization of TCP flows; (i) the lower mean delay brought about {4
by RED is compensated by a large delay variance for smooth
traffic, which would be detrimental to interactive applicationg ™
such as IP telephony. :

Our results indicate that the benefits of RED are not as clear. |
cut as claimed in [8]. Rather, they do point at a definite need o
obtain a thorough analytic (quantitative) understanding of RED,
together with clear operational supporting evidence, to weight50 I
the benefits that a large scale deployment of RED would bring.

T
RED —+—
Tail Drop -------

e in p:

0

L
20 25 30 35 40 45 50
Time in sec

Fig. 15. Evolutions of the instantaneous queue size for RED and Tail Drop with
25, 50, 75, and 100 active TCP flows
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